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Remark :

· Witha similar argument , one can show

if <xnth-Xns is equidistributed for my htxr
,

then < xn > is equidistributed.



· We can use this reducing degree method

to show <UP2 > is equidistributed for KEN, <AR.
In fact

,
< PcnIs is equidistributed of one of

the coefficients of the polynomial P(x) is irrational.


