Recall
Weyl's Criterion
A sequence $\left(x_{n}\right)$ in $[0,1)$ is equidistributed if and only of for any $k \in \mathbb{Z} \backslash\{0\}$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k x_{n}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

$\langle n \alpha\rangle$ is equidistributed $\notin \alpha \notin \mathbb{Q}$

- $\left\langle n^{2} \alpha\right\rangle$ is equidistributed if $\alpha \notin Q$

The idea of the proof is to reduce the degree since $(x+h)^{2}-x^{2}=2 h x+h^{2}$
I. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function and $S_{N}=\sum_{n=1}^{N} e^{2 \pi i f(n)}$. Then $\left|S_{N}\right|^{2} \leq 4 \frac{N}{H} \sum_{h=0}^{H-1}\left|\sum_{n=1}^{N-h} e^{2 \pi i(f(n+h)-f(n))}\right|$ for $H \leqslant N$.
Proof: Let $a_{n}=\left\{\begin{array}{cc}e^{2 \pi i f(n),} & 1 \leq n \leq N, \\ 0, & \text { otherwise }\end{array}\right.$

Then

$$
\begin{aligned}
H S_{N} & =H \sum_{n=1}^{N} a_{n} \\
& =\sum_{k=1}^{H} \sum_{n=-1+1}^{N-1} a_{n+k} \\
& =\sum_{n=-H+1}^{N-1} \sum_{k=1}^{H} a_{n+k}
\end{aligned}
$$

Then

$$
\begin{aligned}
&\left|H S_{N}\right|^{2} \leq(N+H-1) \sum_{n=-H+1}^{N-1}\left|\sum_{k=1}^{H} a_{n+k}\right|^{2} \quad \text { Conchy-Schwoutz } \\
&=(N+H-1) \sum_{n=-H+1}^{N-1} \sum_{i=1}^{H} \sum_{j=1}^{H} a_{n+i} \overline{a_{n+j}} \\
&=(N+H-1) \sum_{n=-\infty}^{\infty} \sum_{i=1}^{H} \sum_{j=1}^{H} a_{n+i} \overline{a_{n+j}} \\
&=(N+H-1) \sum_{i=1}^{H} \sum_{j=1}^{H} \sum_{n=-\infty}^{\infty} a_{n+i} \overline{a_{n+j}} \\
&=(N+H-1) \sum_{i=1}^{H} \sum_{j=1}^{H} \sum_{n=-\infty}^{\infty} a_{n+i-j} \overline{a_{n}} \\
&=(N+H-1)\left(\left.H \sum_{n=-\infty}^{\infty} a_{n}\right|^{2}+\sum_{h=1}^{H-1}(H-h) \sum_{n=-\infty}^{\infty} a_{n+h} \overline{a_{n}}\right. \\
&\left.+\sum_{h=1}^{H-1}(H-h) \sum_{n=-\infty}^{\infty} a_{n-h} \overline{a_{n}}\right) \\
&=(N+H-1)\left(H \sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}+\sum_{h=1}^{H-1}(H-h) \sum_{n=-\infty}^{\infty} a_{n+h} \overline{a_{n}}\right. \\
&\left.+\sum_{h=1}^{H-1}(H-h) \sum_{n=-\infty}^{\infty} a_{n} \overline{a_{n+h}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(N+H-1)\left(H \sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}+\sum_{h=1}^{H-1}(H-h) \geq \sum_{n=-\infty}^{\infty}\left(a_{n+h} \overline{a_{n}}\right)\right) \\
& \leqslant 2 H(N+H-1) \sum_{h=0}^{H-1}\left|\sum_{n=-\infty}^{\infty} a_{n+h} \overline{a_{n}}\right| \\
& \leqslant 4 H N \sum_{h=0}^{H-1}\left|\sum_{n=1}^{N-h} a_{n+h} \overline{a_{n}}\right| \quad H \leqslant N \\
& =4 H N \sum_{h=0}^{H-1}\left|\sum_{n=1}^{N-h} e^{2 \pi i f(n+h)-f(n)}\right|
\end{aligned}
$$

II. $\left\langle n^{2} \alpha\right\rangle$ is equidestributed if $\alpha \notin \mathbb{Q}$

Proof: By Weyl's Criterion, it suffices to show for any $k \in \mathbb{Z} \backslash\{0\}$,

$$
\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k n^{2} \alpha} \rightarrow 0 \text { as } N \rightarrow 0
$$

By I, for any $H \leq N$

$$
\begin{aligned}
\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k n^{2} \alpha}\right|^{2} & \leq \frac{4}{N H} \sum_{h=0}^{H-1}\left|\sum_{n=1}^{N-h} e^{\left.2 \pi i k \alpha(n+h)^{2}-n^{2}\right]}\right| \\
& =\frac{4}{N H} \sum_{h=0}^{H-1}\left|\sum_{n=1}^{N-h} e^{2 \pi i k n n \alpha}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4}{H}+\frac{4}{H} \sum_{h=1}^{H-1}\left|\sum_{h=1}^{N-h} e^{2 \pi i k h n \alpha}\right| \\
& \leqslant \frac{4}{H}+\frac{4}{H} \sum_{h=1}^{H-1}\left|\frac{1}{N} \sum_{h=1}^{N} e^{2 \pi i k h n \alpha}\right|
\end{aligned}
$$

$$
\text { Fix } \underset{\substack{4 \text { large st. } \\ \frac{4}{H}<\varepsilon}}{\leq} \leq \varepsilon \sum_{h=1}^{H-1}\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k h n \alpha}\right|
$$

For \sim large enough $\leq \varepsilon+\varepsilon^{2}$

$$
\sum_{h=1}^{4-1}\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k h n \alpha}\right|_{<\varepsilon}^{0}
$$

Hence, $\frac{1}{N} \sum_{n=1}^{N-1} e^{2 \pi i k n^{2} \alpha} \rightarrow 0$ as $N \rightarrow \infty$

Remark:

- With a similar argument, one com show if $\left\langle x_{n+h}-x_{n}\right\rangle$ is equidistributed for any $h \in \mathbb{N}$, then $\left\langle x_{n}\right\rangle$ is equidistributed.
- We can use this 'reducing degree' method to show $\left\langle n^{k} \alpha\right\rangle$ is equidistributed for $k \in N, \alpha \notin \mathbb{Q}$. In fact, $\langle P(n)\rangle$ is equidistributed if one of the coefficients of the polynomial $P(x)$ is irrational.

